欧拉工程-问题38
原题链接 http://projecteuler.net/problem=38
Pandigital multiples
Take the number 192 and multiply it by each of 1, 2, and 3:
192 * 1 = 192
192 * 2 = 384
192 * 3 = 576
By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1,2,3)
The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).
What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1,2, … , n) where n >1?
全位数乘数
取数字192,将它乘以分别乘以1,2和3:
192 * 1 = 192
192 * 2 = 384
192 * 3 = 576
将这些乘积连接起来,我们将得到一个从1到9的全位数,192384576.我们称192384576为192和(1,2,3)的乘积连接
类似的,我们可以从9开始,将它乘以1,2,3,4和5,得到一个全位数,918273645,即为9和(1,2,3,4,5)的乘积连接。
求由一个整数和(1,2,…,n, n > 1)的乘积连接中得到的1到9的全位数中,最大的那个。
解法:
这题没什么好说的。