原题链接 http://projecteuler.net/problem=29
Distinct powers
Consider all integer combinations of ab for 2 <= a <= 5 and 2 <= b <= 5:
22=4, 23=8, 24=16, 25=32
32=9, 33=27, 34=81, 35=243
42=16, 43=64, 44=256, 45=1024
52=25, 53=125, 54=625, 55=3125
If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
How many distinct terms are in the sequence generated by ab for 2 <= a <= 100 and 2 <= b <= 100?
唯一的幂方
考虑ab形式的所有整数,其中2 <= a <= 5,2 <= b <= 5:
22=4, 23=8, 24=16, 25=32
32=9, 33=27, 34=81, 35=243
42=16, 43=64, 44=256, 45=1024
52=25, 53=125, 54=625, 55=3125
如果将它们按大小排序,去除重复数字,我们可以得到如下15个唯一的数:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
求在ab 其中 2 <= a <= 100 ,2 <= b <= 100中,唯一的数有多少个?
解法:
这里用一个set来存。数学方法还没想到。