前些天在看David Beazley的Python3 metaprogramming 视频,觉得是时候总结下视频中学到的内容, 这篇文章主要是这个视频的笔记,以及关于metaclass的一些思考.
装饰器 首先看一个需求,就是想在函数被调用时,记录一下,可以简单的加个print
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 def add (x, y) : print('add' ) return x + y def sub (x, y) : print('sub' ) return x - y def mul (x, y) : print('mul' ) return x * y def div (x, y) : print('div' ) return x / y print(add(3 , 5 )) print(sub(5 , 2 )) 输出 add 8 sub 3
但是这样的话, print语句就重复了, 每个函数里都得加print, 于是我们可以使用装饰器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 def debug (func) : def wrapper (*args, **kwargs) : print(func.__name__) return func(*args, **kwargs) return wrapper @debug def add (x, y) : return x + y @debug def sub (x, y) : return x - y @debug def mul (x, y) : return x * y @debug def div (x, y) : return x / y print(add(3 , 5 )) print(sub(5 , 2 )) 输出 add 8 sub 3
但是这个简单的装饰器是存在问题的,它会忽略被装饰的函数
1 2 3 4 print (add) 输出 <function debug.<locals>.wrapper at 0 x1037a6bf8>
这里add函数经过debug装饰器装饰后,函数名都被忽略了,这个时候functools模块就派上用场了, 里面的wraps装饰器就是用来解决这个问题
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 from functools import wrapsdef debug (func) : msg = func.__qualname__ @wraps(func) def wrapper (*args, **kwargs) : print(msg) return func(*args, **kwargs) return wrapper @debug def add (x, y) : return x + y @debug def sub (x, y) : return x - y @debug def mul (x, y) : return x * y @debug def div (x, y) : return x / y print(add(3 , 5 )) print(sub(5 , 2 )) 输出 add 8 sub 3 print(add) 输出 <function add at 0x1037afa60 >
带参数的装饰器 有时候装饰器里想传入一些参数, 这时就可以写带参数的装饰器1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 from functools import wrapsdef debug (prefix='' ) : def decroate (func) : msg = prefix + func.__qualname__ @wraps(func) def wrapper (*args, **kwargs) : print(msg) return func(*args, **kwargs) return wrapper return decroate @debug('###') def add (x, y) : return x + y print(add(3 , 2 )) 输出 5
这种带参数的装饰器有一个头疼的问题是, 使用装饰器时, 如果不想传参数, 也得加上括号, 不然会报错
1 2 3 4 5 6 7 8 9 10 11 12 13 14 @debug def sub (x, y) : return x - y sub (5 , 3 ) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-40 -9 a93be17056c> in <module> 3 return x - y 4 ----> 5 sub (5 , 3 ) TypeError: decroate () takes 1 positional argument but 2 were given
加上括号后, 就不报错, 这很丑陋1 2 3 4 5 @debug() def sub (x, y) : return x - y print(sub(5 , 3 ))
这里有一个小技巧, 实现如下1 2 3 4 5 6 7 8 9 10 11 from functools import wraps, partialdef debug (func=None, prefix='' ) : if func is None : return partial(debug, prefix=prefix) msg = prefix + func.__qualname__ @wraps(func) def wrapper (*args, **kwargs) : print(msg) return func(*args, **kwargs) return wrapper
如此, 当使用默认参数时, 即便不带括号时,也不会报错1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 @debug(prefix='###') def add (x, y) : return x + y @debug def sub (x, y) : return x - y print(add(3 , 2 )) print(sub(5 , 3 )) 输出 5 sub 2
类装饰器 以下我们定义一个Spam类,1 2 3 4 5 6 7 8 9 10 11 class Spam : def a (self) : pass def b (self) : pass @classmethod def c (cls) : pass @staticmethod def d () : pass
然后我们想在类的方法被调用时, 能够记录下, 想上面的函数被调用时一样, 这时我们就会可以编写一个类装饰器1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 def debugmethods (cls) : for key, val in vars(cls).items(): if callable(val): setattr(cls, key, debug(val)) return cls @debugmethods class Spam : def a (self) : pass def b (self) : pass @classmethod def c (cls) : pass @staticmethod def d () : pass spam = Spam() spam.a() spam.b() spam.c() spam.d() 输出 Spam.a Spam.b
这里只打印了a和b, 没有打印c和d, 这什么原因呢? 这是因为classmethod和staticmethod都是descriptor, 也就是描述器, 它们没有实现__call__
方法,也就不是callable的
我们也可以编写一个类装饰器, 当获取一个属性时, 打印日志1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 def debugattr (cls) : orig_getattribute = cls.__getattribute__ def __getattribute__ (self, name) : print('Get:' , name) return orig_getattribute(self, name) cls.__getattribute__ = __getattribute__ return cls @debugattr class Spam : def __init__ (self, x, y) : self.x = x self.y = y spam = Spam(2 , 3 ) print(spam.x) 输出 Get: x 2
现在我们想对所有的类都能打印日志,一个解决的办法是在所有的类前面都加上类装饰器1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 @debugmethods class Base : def a (self) : pass def b (self) : pass @debugmethods class Spam (Base) : def a (self) : pass b = Base() b.a() s = Spam() s.a() 输出 Base.a Spam.a
但这样很麻烦,于是metaclass派上用场了, metaclass最强的地方是可以控制类的创建
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 class debugmeta (type) : def __new__ (cls, clsname, bases, clsdict) : clsobj = super().__new__(cls, clsname, bases, clsdict) clsobj = debugmethods(clsobj) return clsobj class Base (metaclass=debugmeta) : def a (self) : pass def b (self) : pass class Spam (Base) : def __init__ (self, name) : self.name = name def a (self) : pass b = Base() b.a() s = Spam('name' ) s.a() 输出 Base.a Spam.__init__ Spam.a
从上面的例子中我们看到,有一个类有metaclass, 它的所有子类都有metaclass, 这说明metaclass是会被继承的。结合蔡元楠的《metaclass, 是潘多拉魔盒还是阿拉丁神灯》, 可以知道,这里debugmeta其实不只一种写法,在__init__
函数里实现也是可以的。重载__init__
的实现如下1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 class debugmeta (type) : def __init__ (cls, name, bases, kwds) : super(debugmeta, cls).__init__(name, bases, kwds) cls = debugmethods(cls) class Base (metaclass=debugmeta) : def a (self) : pass def b (self) : pass class Spam (Base) : def __init__ (self, name) : self.name = name def a (self) : pass b = Base() b.a() s = Spam('lala' ) s.a() 输出 Base.a Spam.__init__ Spam.a
这是因为, 所有的类都是type的实例, 都是对type的__call__
方法进行重载, 而type的__call__
方法会调用type.__new__(typeclass, classname, superclasses, attributedict)
和type.__init__(class, classname, superclasses, attributedict)
, 所以上面重写__new__
和重写__init__
都是可以的。
学到这里,我脑海里冒出了一个想法,就是为啥这里一定要用metaclass呢? 用继承的方式难道不行吗?于是自己尝试写了个继承的方式, 发现也是跑得通的。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 class debugmeta : def __new__ (cls, *args, **kwargs) : cls = debugmethods(cls) clsobj = object.__new__(cls) return clsobj class Base (debugmeta) : def a (self) : pass class Spam (Base) : def __init__ (self, name) : self.name = name def a (self) : pass b = Base() b.a() s = Spam('name' ) s.a() 输出 Base.a Spam.__init__ Spam.a
但实际上,这样做法是有问题的,后面等到后面我们来纠正这个问题。
既然如此,那么蔡元楠在《metaclass, 是潘多拉魔盒还是阿拉丁神灯》介绍的yaml的动态序列化和逆序列化的能力又为何要用metaclass实现呢?用继承难道不行吗?于是也写了一个继承的版本, 代码如下。1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 import yamlclass MyYAMLObjectBaseclass (object) : """ The metaclass for YAMLObject. """ def __new__ (cls, *args, **kwargs) : if cls.yaml_tag: cls.yaml_loader.add_constructor(cls.yaml_tag, cls.from_yaml) cls.yaml_dumper.add_representer(cls, cls.to_yaml) return object.__new__(cls) class MyYAMLObject (MyYAMLObjectBaseclass) : """ An object that can dump itself to a YAML stream and load itself from a YAML stream. """ __slots__ = () yaml_loader = yaml.Loader yaml_dumper = yaml.Dumper yaml_tag = None yaml_flow_style = None @classmethod def from_yaml (cls, loader, node) : """ Convert a representation node to a Python object. """ return loader.construct_yaml_object(node, cls) @classmethod def to_yaml (cls, dumper, data) : """ Convert a Python object to a representation node. """ return dumper.represent_yaml_object(cls.yaml_tag, data, cls, flow_style=cls.yaml_flow_style) class Monster (MyYAMLObject) : yaml_tag = '!Monster' def __init__ (self, name, hp, ac, attacks) : self.name = name self.hp = hp self.ac = ac self.attacks = attacks def __repr__ (self) : return "{}(name={}, hp={}, ac={}, attacks={}" .format(self.__class__.__name__, self.name, self.hp, self.ac, self.attacks) class Dragon (Monster) : yaml_tag = '!Dragon' def __init__ (self, name, hp, ac, attacks, energy) : super(Dragon, self).__init__(name, hp, ac, attacks) self.energy = energy def __repr__ (self) : return "{}(name={}, hp={}, ac={}, attacks={}, energy={})" .format(self.__class__.__name__, self.name, self.hp, self.ac, self.attacks, self.energy) m = Monster(name='Cave spider' , hp=[2 , 6 ], ac=16 , attacks=['BITE' , 'HURT' ]) ms = yaml.dump(m) d = Dragon(name='Cave spider' , hp=[2 , 6 ], ac=17 , attacks=['BITE' , 'HURT' ], energy=5000 ) ds = yaml.dump(d) print(yaml.load(ms, Loader=yaml.Loader)) print(yaml.load(ds, Loader=yaml.Loader)) 输出 Monster(name=Cave spider, hp=[2 , 6 ], ac=16 , attacks=['BITE' , 'HURT' ] Dragon(name=Cave spider, hp=[2 , 6 ], ac=17 , attacks=['BITE' , 'HURT' ], energy=5000 )
所以其实到这里我还是没有明白为啥yaml要用metaclass来实现这个功能, 直到把子类的yaml_tag去掉, 才发现问题。1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 import yaml class Monster (MyYAMLObject ): yaml_tag = '!Monster' def __init__ (self , name, hp, ac, attacks) : self .name = name self .hp = hp self .ac = ac self .attacks = attacks def __repr__ (self ) : return "{}(name={}, hp={}, ac={}, attacks={}" .format(self .__class__ .__name__ , self .name, self .hp, self .ac, self .attacks) class Dragon (Monster ): def __init__ (self , name, hp, ac, attacks, energy) : super (Dragon , self ).__init__ (name, hp, ac, attacks) self .energy = energy def __repr__ (self ) : return "{}(name={}, hp={}, ac={}, attacks={}, energy={})" .format(self .__class__ .__name__ , self .name, self .hp, self .ac, self .attacks, self .energy) m = Monster (name='Cave spider' , hp=[2 , 6 ], ac=16 , attacks=['BITE' , 'HURT' ]) ms = yaml.dump(m) d = Dragon (name='Cave spider' , hp=[2 , 6 ], ac=17 , attacks=['BITE' , 'HURT' ], energy=5000 ) ds = yaml.dump(d) print(yaml.load(ms, Loader =yaml.Loader )) print(yaml.load(ds, Loader =yaml.Loader )) 输出 --------------------------------------------------------------------------- AttributeError Traceback (most recent call last)<ipython-input-58 -1 e3c4c44fbaf> in <module > 33 34 ---> 35 print(yaml.load(ms, Loader =yaml.Loader )) 36 print(yaml.load(ds, Loader =yaml.Loader )) <ipython-input-58 -1 e3c4c44fbaf> in __repr__ (self ) 24 def __repr__ (self ) : 25 return "{}(name={}, hp={}, ac={}, attacks={}, energy={})" .format(self .__class__ .__name__ , self .name, self .hp, ---> 26 self .ac, self .attacks, self .energy) 27 28 m = Monster (name='Cave spider' , hp=[2 , 6 ], ac=16 , attacks=['BITE' , 'HURT' ]) AttributeError : 'Dragon' object has no attribute 'energy'
这是因为Dragon这里没有yaml_tag的时候, 会继承父类Monster的yaml_tag, 这时Dragon.yaml_tag就是非空, 然后就会将!Monster这个标记与Dragon绑定到一起了, 覆盖了前面!Monster与Monster的绑定, 这时再去加载Monster类dump出来的内容, 就会报没有energy. 而使用metaclass就不存在这个问题, 因为在创建Dragon类时, 传入的属性字典里不会带有yaml_tag, 也就不会将!Monster这个标记与Dragon绑定到一起. 写代码测试如下1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 import yamlclass MyYAMLObjectMetaclass (type ): """ The metaclass for YAMLObject. """ def __new__ ( cls, name, bases, kwds): print(cls, name, bases, kwds.get('yaml_ta g', 'hahah a')) clsobj = super ().__new__(cls, name, bases, kwds) if 'yaml_ta g' in kwds and kwds['yaml_ta g'] is not None : clsobj.yaml_loader.add_constructor(clsobj.yaml_tag, clsobj.from_yaml) clsobj.yaml_dumper.add_representer(clsobj, clsobj.to_yaml) return clsobj class ThisYAMLObjectMetaclass (type ): """ The metaclass for YAMLObject. """ def __init__ ( cls, name, bases, kwds): print(cls, name, bases, kwds.get('yaml_ta g', 'hahah a')) super (ThisYAMLObjectMetaclass , cls).__init__(name, bases, kwds) if 'yaml_ta g' in kwds and kwds['yaml_ta g'] is not None : cls.yaml_loader.add_constructor(cls.yaml_tag, cls.from_yaml) cls.yaml_dumper.add_representer(cls, cls.to_yaml) class ThisYAMLObjectBaseclass (object ): """ The metaclass for YAMLObject. """ def __new__ ( cls, *args, **kwargs): print('base __new__', cls, args, kwargs) if cls.yaml_tag: cls.yaml_loader.add_constructor(cls.yaml_tag, cls.from_yaml) cls.yaml_dumper.add_representer(cls, cls.to_yaml) return object .__new__ ( cls) class MyYAMLObject ( metaclass=ThisYAMLObjectMetaclass ):# class MyYAMLObject (ThisYAMLObjectBaseclass ): # class MyYAMLObject ( metaclass=MyYAMLObjectMetaclass ): """ An object that can dump itself to a YAML stream and load itself from a YAML stream. """ __slots__ = () # no direct instantiation, so allow immutable subclasses yaml_loader = yaml.Loader yaml_dumper = yaml.Dumper yaml_tag = None yaml_flow_style = None @classmethod def from_yaml ( cls, loader, node): """ Convert a representation node to a Python object. """ return loader.construct_yaml_object(node, cls) @classmethod def to_yaml ( cls, dumper, data): """ Convert a Python object to a representation node. """ return dumper.represent_yaml_object(cls.yaml_tag, data, cls, flow_style=cls.yaml_flow_style) class Monster (MyYAMLObject ): yaml_tag = '!Monster ' def __init__ ( self, name, hp, ac, attacks): self.name = name self.hp = hp self.ac = ac self.attacks = attacks def __repr__ ( self): return "{}(name={}, hp={}, ac={}, attacks={}" .format(self.__class__.__name__, self.name, self.hp, self.ac, self.attacks) class Dragon (Monster ): # yaml_tag = '!Dragon ' def __init__ ( self, name, hp, ac, attacks, energy): super (Dragon , self).__init__(name, hp, ac, attacks) self.energy = energy def __repr__ ( self): return "{}(name={}, hp={}, ac={}, attacks={}, energy={})" .format(self.__class__.__name__, self.name, self.hp, self.ac, self.attacks, self.energy) m = Monster (name='Cave spider', hp=[2 , 6 ], ac=16 , attacks=['BIT E', 'HUR T']) ms = yaml.dump(m) # print(ms) d = Dragon (name='Cave spider', hp=[2 , 6 ], ac=17 , attacks=['BIT E', 'HUR T'], energy=5000 ) ds = yaml.dump(d) # print(ds) print(yaml.load(ms, Loader =yaml.Loader )) print(yaml.load(ds, Loader =yaml.Loader )) 输出 <class '__main__ .MyYAMLObject '> MyYAMLObject ( ) {'__module_ _': '__main_ _', '__qualname_ _': 'MyYAMLObjec t', '__doc_ _': '\n An object that can dump itself to a YAML stream\n and load itself from a YAML stream .\n ', '__slots__ ': (), 'yaml_loade r': <class 'yaml .loader .Loader '> , 'yaml_dumper ': <class 'yaml .dumper .Dumper '> , 'yaml_tag ': None , 'yaml_flow_styl e': None , 'from_yam l': <classmethod object at 0x1038e9320> , 'to_yaml ': <classmethod object at 0x1038e9390> } <class '__main__ .Monster '> Monster ( <class '__main__ .MyYAMLObject '> ,) {'__module_ _': '__main_ _', '__qualname_ _': 'Monste r', 'yaml_ta g': '!Monster ', '__init_ _': <function Monster .__init__ at 0x1038d2f28 >, '__repr_ _': <function Monster .__repr__ at 0x1038ce048 >} <class '__main__ .Dragon '> Dragon ( <class '__main__ .Monster '> ,) {'__module_ _': '__main_ _', '__qualname_ _': 'Drago n', '__init_ _': <function Dragon .__init__ at 0x1038ce0d0 >, '__repr_ _': <function Dragon .__repr__ at 0x1038ce158 >, '__classcell_ _': <cell at 0x103837af8 : ThisYAMLObjectMetaclass object at 0x7fc8fb130de8> }Monster (name=Cave spider, hp=[2 , 6 ], ac=16 , attacks=['BIT E', 'HUR T'] Dragon (name=Cave spider, hp=[2 , 6 ], ac=17 , attacks=['BIT E', 'HUR T'], energy=5000 )
从上面的结果里可以看到, yaml_tag是没有在Dragon类的属性字典里的,即便是Dragon类会从Monster那里继承yaml_tag.
回到前面的用基类来实现对所有类使用debugmethods进行装饰的例子。这里因为每次创建对象的时候都会调用__new__
方法, 会导致多次调用debugmethods装饰器, 这样会导致创建多少个对象, 调用一次类的方法就会输出多次, 测试如下
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 class debugmeta : def __new__ (cls, *args, **kwargs) : cls = debugmethods(cls) clsobj = object.__new__ (cls) return clsobj class Base (debugmeta ): def a (self ) : pass class Spam (Base ): def __init__ (self , name) : self .name = name def a (self ) : pass b = Base () b.a() s = Spam ('name' ) s.a() print('-------' ) s = Spam ('lblb' ) s.a() 输出如下 here <class '__main__ .Base '> Base .ahere <class '__main__ .Spam '> Spam .__init__ Spam .a------- here <class '__main__ .Spam '> Spam .__init__ Spam .__init__ Spam .aSpam .a
这里Spam类创建了两个对象, 就调用了两次debugmethods, 所以会有多次输出。
到了这里, 我终于明白为什么要用metaclass来解决对于所有类使用debugmethods来装饰的问题,因为在metaclass里实现,则只会调用一次,因为一个类的创建只需要一次。也明白为什么yaml要使用metaclass, 而不是继承了。
总的来说, metaclass并不是什么奇淫巧技,简单来说就是一种改变类创建过程的能力。当然, 绝大多数情况下都不需要用到它。